ON THE COMPUTATION OF ABSORPTION IN THE
VIBRATIONAL-ROTATIONAL SPECTRUM BAND

S. P. Detkov UDC 536.3;535.338

Integral absorption in a spectrum band is represented as a series. Monotone growth of the
coefficients in the series and their limits are established. The results are used to analyze
known absorption formulas and to compare approximate formulas,

Heat exchange occurs mainly because of radiation and absorption of a medium with a vibrational-rota-
tional spectrum in the comhbustion chambers of steam generators, gas turbines, and other aggregates. The
characteristics of the spectrum band must be taken into account in computations of the heat exchange by
radiation. The geometric optics quantity A, called the integrated absorption in the spectrum band,
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has acquired the central role.

Here w is the wave number (cm™?Y), w, is the location of the center of the band, Aw is a width parameter,
S is the integrated intensity (cm™Ym . atm), x is the ray path (m - atm), o, is the spectral coefficient of
absorption (m * atm)~!, and ¢ is a dimensionless function. A special section of the theory including a model
of the bands is devoted to the quantity A.

Furthermore, in place of (1) let us examine the series for dimensionless absorption obtained by ex-
panding the exponential term in (1).
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THEOREM. The sequence of coefficients of the series (2) increases monotonely to the limit
limoy = (do)maz, 1> 2 - 4)
200 .

Here (@)max is the maximum spectrum absorption coefficient. Let us first note in the proof that the
band can always be rearranged so that the spectrum coefficient oy would diminish monotonely from the
maximum value at v = 0 to zero at infinity. Here v = v/A w, v is the value of the argument after rearrange-
ment of the wave-number axis. )

Let us replace the contour of the rearranged band by the line
Oy = (dtm)max (1 —v/ vo)

where vy is the abscissa at which the coefficient « ,(v) decreases to zero. The line cbntour covers the actu-
al contour or touches it. The theorem is thereby proved under less favorable conditions. It follows from
(3) that .

Sverdlovsk., Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 15-22,
March-April, 1972. Original article submitted September 7, 1971,

© 1974 Consultants Burean, a division of Plenum Publishing Corporation, 227 West 17¢h Street, New York, N. Y. 10011.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photacopying, microfilming, recording or otherwise, without written permission of the publisher. A
copy of this article is available from the publisher for §15.00.

145



Do

S(‘l_—v/vo)idv

- i
o = (%o)max ,: A = T (“m)max .
S A —v /v tdo
H .

The theorem is proved.

A singularity originates as v, — «. But in this case it is sufficient to examine a rectangular contour
overlapping all the others. A simple result is obtained: all the aj are equal and the series (2) is curtailed
exactly.

A =1—exp(— a;x)

The theory is verified easily in examples of single lines with dispersion of Doppler contours. It can
be proved phenomenologically if a physical meaning is ascribed to the coefficients oj. Thus, the coefficient
oy determines the absorption of the black flux in the band at the initial section (for x = 0). The coefficient
a4 determines the absorption of the reradiated flux in the initial section. The coefficient oy determines the
reradiation of the described absorbed flux if there is no energy redistribution in the wave numbers in this
as in the later stages of the interaction between the radiation and the gas. The coeffient o, determines the
absorption of the described reradiated flux in the initial section, etc. In principle, the number of reradia-
tions is infinite. The flux components with lower values of o, vanish with reradiation; there remains the
last component with the maximum spectrum coefficient of absorption.

An investigation of the known functions A is possible after they have been differentiated and the se-
quence oy has been determined on the basis of the equality

[T oy = (— 1940/ 00)mp = (— 14,0 6
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Divergences from the theorem indicate the incorrectness of the formula for A being investigated.
Here (@ )max c2n be found by means of the theorem @).

The determination of the derivatives At()l) will often be awkward. Only the first derivatives are found
"successfully. In that case, deductions can be made for low and medium thicknesses, when the first coef-
ficients oy, o,...playa fundamental part. As the gas layer thickens, their role is reduced, although not
rapidly since the optical thickness on the bandheads remains small for very high layer thicknesses.

Let us examine the class of formulas obtained on the basis of the band models
A= {a.dy. ®)
]

Here A is the mean absorption in a sufficiently narrow spectrum range. The quantities Ay are de-
scribed by narrowband models. It has been shown in [1] that
sz /d b n
T —emr————— == —— — 7
2 e B=2n—, 2>a>- (7
can be taken as the argument of Ay in all models from the regular to the statistical.

Here s, b,and d are the integrated intensity, line halfwidth, and mean spacing between them. The num-
ber @ depends on the model taken. It follows from (5) and (6) that
[T oy = ( tys (A“)dy, AD = (040 )92y . ®)
=1
The derivative A (&30 consists of 2 sum in whose terms diverse derivatives zg{)
the higher derivative z( enter. In conformity with (7)

= (akz/ axk)x=0 including
za<k>:(_1)k+i(%)"(;ﬁj X AX3X5%... X 2k — 3).
After substituting z%{) in (8), we obtain

Tal—F(Bj( ) @ ©)

J=1

if the parameter 8 is independent of the wave number.

The function F; is a polynomial whose terms contain the factor (1/3)1{_1 for k=1, 2,
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The dependence of the parameter s/d on the wave number is determined in the so-called wideband
model [2]
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The function f(y) is the envelope of the band. From (9) and (10) follows
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F=1 '
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As is seen, the sequence of numbers C; is determined only by the wideband model. The theorem is
satisfied for any function f(y) remotely similar to the envelope of the band. The sequence of numbers F;
is determined only by the narrowband model. It does not determine the pressure dependence of the absorp-
tion.

Let us turn to specific formulas of integrated absorption which are extensively used.
Wideband Model of Edwards [2]. The envelope of the band corresponds to the model of a rigid rotator
f @ = yexp (—¥), (12)

Here the @-branch is discarded, and the P~ and R- branches are assumed symmetric. The parameter
B is independent of the wave number. The parameter Aw characterizes one branch of the band, which alters
part of (10) and (11) somewhat, :

T K i i+4-1 L5 .
C=2[t@dy=1, C=2{fEdy=T(H) Jwmr >z, a3)
0 0
A simpler model f(y) = exp(-y) for which Ci = 1/i is often used.

The Goode model
sz ld

=W—j——:—~—m (B=2nb/d)

A, =1—¢72 2 (14)

is usually relied upon as narrowbanded.

Using (14), six quantities are represented below;
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A curious agreement of all the polynomijals F; is obtained for
oc; fot, |— A, =1 + exp(z) and all positive derivatives zy".

50

Shown in Fig. 1 are the coefficients o;/ o corresponding to the

B series 2). The notation on the curves denotes: E, E, by means of

f»'ﬁ (11)- (14), the polynomials F;(8) have been represented earlier; E ',

b/ — (I E,' by means of (11), (12) and (15); Ty, T, by means of (5) and (16). The
/ // E; % subscripts 1 and 2 in the notation on the curves correspond to 8 =

0.051266 and 8 = 0.29. As is seen, the theorem is satisfied (see the

] 5 expression for o;/ag).

According to (14) the magnitude of (&) 45 turns out tobe infinite.
/y 7 7 ¥ G I This follows from the fact that the statistical model (14) includes lines
: with infinite intensity for a fixed width.
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If lines with identical intensity are taken in the same model, then
zZ = ﬁL (S.’L‘ / ﬁd) (15)

where L is the Landenburg and Reiche function. Now (a) .. is some finite quantity. As g — 0, when the
lines do not overlap, the quantity (@y)max = s/7b as for a singledine.

The quantities Oli/O!() for the same By and B3 are shown in Fig. 1 for Eq. (15), The polynomials
F;j differ from those represented earlier by just the numbers in the numerators.

Instead of (14) let us use an approximation within the scope of the Elsasser model:
Am=erf(zV¢T/2).

The argument z is written in (7) for a=7/2. According to {1}, in the case of a weak line the approx-
imation has the greatest error < 8% at 8 = 1. It increases to 7-7.5% as 8 diminishes. The maximum abso-
lute deviation does not exceed 0,03-0.035. Let us use the simplification [1]

erf(z Va |2y =~ Vm
with the additional error < 0.7%.

Then the fourth derivative Ac(j% becomes infinite, The theorem (4) is not satisfied because of the ap-
proximations introduced.

Let us examine the empirical formula proposed in [3] and still used extensively in the literature:
T _ u-+2
& . b (16)
U =0, 9= p=, f=294[1 —exp(~—1.38)], B= 2:57- .
The first ratios oj/ oy are represented in general form below:
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The ratios aj/ oy are presented in the figure for § =g, and g =8, For g = B =0.051266 it can be
assumed that f = 3.82 8 with < 3% error,

Under definite conditions, (16) simplifies:

A=In{l +uf), a/oay=0—-1f [f>2,
According to (2) we obtain

- 2 3
A=y W0 L WP

The series diverges for uf > 1. Therefore, (16) is not fully correct. For example, it has a lower
bound in the parameter 8. For u> 2 f the coefficient @, obtained is incorrect since it depends on the pres-
sure, The empirical formula A = 1n@ — B8 + uB) is recommended in [4] for & > 2. Very small values of
ufB are thereby eliminated. Furthermore, the quantity (¢ )max. obtained, if it has meaning, isinfinite ac-
cording to (16). And finally, let us note that the contour f(v) of the rearranged poles corresponding to (16)
exists apparently only for x —0, f(v) = v exp(-v).
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Actually, for low thicknesses in conformity with (16)

o) =ver=~ — % In [1 — ek (vu)]

4= jl (1 — exp(—uf (W)]dv= yé“’h(uv)dv =In({l +u).
b

(1]
Here h{vu) = In(y vu) + E{(vu), Iny = 0.57722, E, is the exponential integral, h(vu)= vu for vu «< 1,

A comparison of the expressions presented earlier for the polynomials shows the essential differences
in the dependences of the coefficients @4 on the parameter .

Let us turn to important examples of the approximate formulas which are produced by using the prop-
erties of the series (2). If at least the first coefficients «; are known, the series @) yields a formula suit-
able for small thicknesses. Ifs limit can be extended after an estimation of the remainder of the series.

An approximate curtailment of the whole series is often successful.

Landenburg and Reiche Function. The function Lu) determines the absorption in a single line with a
dispersion contour, The interest in the function grew after Goode had used it to describe absorption in a
narrow band (see (15}}. In conformity with the series (2)

_4 Utz AN __1;_1 L
L(u)“m-‘ulw—-—w‘-’!‘-“}‘( 1)+1i! glu]&”. (17)

Sx - sr __,1 __2
S T ey M M =4, M= aA— o

Here A is the integrated absorption in the line cm™Y,

The sequence of numbers m; permitted selection of a function suitable for all thicknesses:
L= V -?Tuerf(—g—'l// —3—)
Using the approximation of the probability integral presented above, we obtain

‘Lovzl/%u[lﬁexp_(_ £

with a maximum error of 5.7% for u = 1.2-1.6.

The formula

L =g [’i 4 (lz‘ u)l.z.s}~o.4 (18)

is presented in [1] with € 1% error. Its simplification yields
Ly=u/VT+au/2
with the greatest error of 7.5% atu= 1.
Because the deviations of Ly and L, are opposite, we obtain the interpolation formuia
L = 0.57L, + 0.43L, (19)
with < 1% error (considerably less than 1% as a rule). Formula (19) is more convenient than (18).

Very exact approximations can be obtained for small thicknesses by taking account of the first terms
of the series (17) separately. Because the sequence of numbers mj converges rapidly, the remainder of the
series can be curtailed by using the exponential function

L =02u + 0.14 u®> — 0.065u® + [1 — exp (—1.6w)1/2. 20}

The u® coefficient is revised so that the function would be exact for u = 1.2. In this case, 20) describes
the function well up to u = 1.4.

Constructions of the formulas for taking account of the first terms of the series separately can be
different.
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Letus also present an extrapolationformula suitable for large arguments:
L) =ViaTuL ).
For u =5, 0.7 = u,/u = 1.56,the error in the formula is 1.2-1%. As u increases and the arguments

u, , u approach each other, the error diminishes rapidly.

Absorption in a Band according to the Model (12) with Overlapping Lines.

A, =1 —exp(—sz/d), A=2I(up)
21)

> 2
21=uo—ca—§°,—+ca—'§‘,~—... (1o = oz, o= | A)

Here C; is defined by (13), C; = 0.3133. Furthermore, CJ/ CJ-_1 tends to the limit 1/v 2e = 0,43, Near-

by values of tJhe numbers Cj/ Cj- permitted the use of the exponential function
I=16[1—exp(— 0.625 u,/ 2)]

to curtail the series 21).

The maximum error of the formula in the interval 0 < uy =< 4 equals 1.7% for uy= 4. Furthermore, it
increases rapidly. For uy= 20 [5]

I =111y 1In{1.21uy)

with < 3% error.

The formula

I=V1.T{1 + exp(— 0.43uy)] In (% / 2)

is found for the intermediate values 4 < u; =< 20 with a maximum error of < 1,5% for u, = 8.

There are now sufficiently simple and exact formulas of I for all u,. They are considerably more exact
than the approximation in [6] for all u,:

I=V{1—exp (— ug / 2110.5772 + In (2, / 2)] + B, (ue/2)] .

Finally, let us present another formula with the first terms of the series 21) taken separately into

account: .
uo Cauo CS2 - ZCa(P ] }
I=—2~{1—‘ 2 (1— C:Cy (1 CAuu).
. Cauor] Cs
o=t —[t—ex (=) g
(C5=0.3133, C3=01444, C.,=0.04158) .

The error in the formula is negligible to u; = 6. Furthermore, it increases and equals 0.25% for u,y =
10. Graphs of the function Ty in [5], which are more detailed than in {6}, were relied upon for the com-
parison,
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