
ON T H E  C O M P U T A T I O N  OF A B S O R P T I O N  IN T H E  

V I B R A T I O N A L - R O T A T I O N A L  S P E C T R U M  B A N D  

S. P .  D e t k o v  UDC536.3;535.338 

Integral absorption in a spectrum band is represented as a ser ies .  Monotone growth of the 
coefficients in the ser ies  and their l imits  are established. The resul ts  are used to analyze 
known absorption formulas a n d t  0 compare  approximate formulas .  

Heat exchange occurs  mainly because of radiat ion and absorption of a medium with a v ibra t iona l - ro ta -  
tional spec t rum in the combustion chambers  of s team genera tors ,  gas turbines, and other aggregates .  The 
charac te r i s t i c s  of the spec t rum band must  be taken into account in computations of the heat exchange by 
radiation. The geometr ic  optics quantity A, called the integrated absorption in the spec t rum band, 

, 

A = A(o [1 -- exp (-- a,~ (y) x)] d:] (1) 
0 

a o : a o ~ ( g ) ,  a o : S / A o ) ,  y : ]  (0-- (%I/A(0 

has acquired the central  role.  

Here w is the wave number (cm-1), co 0 is the location of the center  of the band, Aw is a width parameter ,  
S is the integrated intensity (cm- t /m �9 at-m), x is the ray  path (m �9 arm), ~w is the spectra l  coefficient of 
absorption (m �9 arm) -~, and r is a dimensionless  function. A special  section of the theory  including a model 
of the bands is devoted to the quantity A. 

Fur thermore ,  in place of (1) let us examine the se r ies  for dimensionless  absorption obtained by ex- 
panding the exponential t e rm in (1). 

i 
A x ~ (__ t ) i +  1 x~ ~i  = h-~ = ~ i x - - ~ 1 ~ 2 ~ ,  + . . .  + ~ - , ~ I  a j . . .  (2) 

i=1 
i cr 

J ~ l  0 

THEOREM. The sequence of coefficients of the se r ies  (2) increases  monotonely to the limit 

lira a~ = (a~)~x, i ~ 2 . (4) 
i ~ o e  

Here ((~w)max is the maximum spec t rum absorption coefficient. Let us f i rs t  note in the proof  that the 
band can always be r ea r ranged  so that the spec t rum coefficient ~w would diminish monotonely f rom the 
maximum value at v = 0 to zero  at infinity. Here v = v / A  w, v is the value of the argument  af ter  r e a r r a n g e -  
ment  of the wave-number axis. 

I~et us replace the contour of the r ea r ranged  band by the line 

a ~  = ( ~ ) ~  (1 - -  v / v0) 

where v 0 is the absc i ssa  at which the coefficient (~oj(v) dec reases  to zero.  The line contour covers  the actu-  
al contour or touches it. The theorem is thereby proved under less  favorable conditions. It follows f rom 
(3) that 
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S (t -- v / vo) i dv 

�9 0 i ( ~ r  . 

S (i - -  v / vo) ~-1 dv 
0 

The theorem is proved.  

A singulari ty originates as v 0 - -  ~ .  But in this case it is sufficient to examine a rectangular  contour 
overlapping all  the others.  A simple resu l t  is obtained: all the ~j are  equal and the ser ies  (2) is curtai led 
exactly.  

= I -- exp (-- a~x) 

The theory  is verif ied easi ly in examples of single lines with dispersion of Doppler contours.  It can 
be proved phenomenologically if a physical  meaning is ascr ibed to the coefficients (~j. Thus, the coefficient 
~1 determines  the absorption of the black flux in the band at the initial section (for x = 0). The coefficient 
~2 determines  the absorption of the reradia ted flux in the initial section. The coefficient ~ determines  the 
reradiat ion of the descr ibed absorbed flux if there is no energy redistr ibution in the wave numbers in this 
as in the la te r  s tages of the interaction between the radiation and the gas. The coeffient ~4 determines  the 
absorption of the descr ibed reradia ted  flux in the initial section, etc. In principle,  the number of r e r ad i a -  
tions is infinite. The flux components with lower values of c~ w vanish with reradiat ion;  there  remains  the 
las t  component with the maximum spectrum coefficient of absorption. 

An investigation of the known functions A is possible after they have been differentiated and the se-  
quence ~j has been determined on the basis of the equality 

i 

[ [  a~ = ( -  ~)~+~ (at~ / ax%~=0 = (-- i)~+~0 (~) . (5) 
j = l  

Divergences f rom the theorem indicate the incorrec tness  of the formula for ~ being investigated. 
Here (~0)max can be found by means of the theorem (4). 

The determinat ion of the derivatives AI i) will often be awkward. Only the f i rs t  derivat ives are  found 
' successful ly .  In that case,  deductions can be made for low and medium thicknesses,  when the f i r s t  coef-  
ficients r (~2,-.. play a fundamental part.  As the gas layer  thickens, their role is reduced, although not 
rapidly since the optical thickness on the bandheads remains  small for very  high layer  thicknesses.  

Let  us examine the c lass  of formulas obtained on the basis of the band models 
o o  

= S Ao~dy.  (6) 
0 

Here Aw is the mean absorption in a sufficiently narrow spec t rum range. The quantities Ac0 are  de-  
scr ibed by narrowband models .  It has been shown in [1] that 

s x / d  b 
z =  Yi+a~:s /~d'  ~ =  2g , 2>~a>~-5~ (7) 

can be taken as the argument  of A~ in all models f rom the regular  to the stat ist ical .  

Here s, b, and d are  the integrated intensity, line halfwidth, and mean spacing between them. The num- 
ber  a depends on the model taken. It follows f rom (5) and (6) that 

i r162 . 

[[  f (i) a(~) , (OiA~ / Ox%~_0 (8) a i = ( - t )  ~+1 A,~ody, ~ o - -  - . 
j = l  0 

The derivative A ""~o consis ts  of a sum in whose t e rms  diverse derivat ives z --(0 K) = (0kz/ax--t%x=0 including 
the higher derivative z (i) enter.  In conformity with (7) 

0 

= (~-) k x i x 3 •  

After substituting z% k) in (8), we obtain 

i s i 

H = (9) 

if the pa ramete r  ~ is independent of the wave number. 

The function F i is a polynomial whose t e rms  contain the factor (1/fl) k-1 for k = 1, 2, .... i. 
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The d e p e n d e n c e  of the p a r a m e t e r  s / d  on the wave  n u m b e r  i s  d e t e r m i n e d  in the s o - c a l  l ed  wideband  
m o d e l  [2] 

1 (y) dy . ( 1 o )  s / d = a o / ( y ) ,  % = S / A ( o ,  = 1 
. 

The funct ion f ( y )  is  the enve lope  of the band.  F r o m  (9) and (10) fo l lows  
i zo 

l [  (~:/~.o)i=C,F~, Q = I / : (y )dg .  (::) 
j ~ l  

As is s een ,  the  s e q u e n c e  of n u m b e r s  C i is  d e t e r m i n e d  only  by  the  wideba~nd mode l .  The t h e o r e m  is  
s a t i s f i e d  for  any  funct ion f ( y )  r e m o t e l y  s i m i l a r  to  the e n v e l o p e  of the band.  The s e q u e n c e  of n u m b e r s  F i 
is  d e t e r m i n e d  only by  the n a r r o w b a n d  mode l .  It does  not d e t e r m i n e  the p r e s s u r e  d e p e n d e n c e  of  the  a b s o r p -  
t ion.  

L e t  us  t u rn  to s p e c i f i c  f o r m u l a s  of i n t e g r a t e d  a b s o r p t i o n  which  a r e  e x t e n s i v e l y  u s e d .  

Wideband  Model  of E d w a r d s  [2]. The enve lope  of the  band  c o r r e s p o n d s  to the m o d e l  of  a r i g i d  r o t a t o r  

/ (y) = y exp (-y~), (:2) 

Here  the Q - b r a n c h  i s  d i s c a r d e d ,  and the  P -  and R -  b r a n c h e s  a r e  a s s u m e d  s y m m e t r i c .  The p a r a m e t e r  
fl is  i ndependen t  of the  wave  n u m b e r .  The p a r a m e t e r  Aw c h a r a c t e r i z e s  one b r a n c h  of  the band,  which a l t e r s  
p a r t  of  (10) and (11) s o m e w h a t .  

| ~o i q - t  / 
C l = . 2 S ] ( y ) d y = i ,  C : = 2 f f ( y ) d y = F ( - - : - - ) l i ( i + ' ) / ' ,  i > 2 .  (13) 

0 o 

A s i m p l e r  m o d e l  f ( y )  = exp( -y)  for  which  C i -- 1 / i  is  often used .  

The Goode m o d e l  

sx Id A , ~ -  l ~ e  -z, z = (~=2nb/d) 
]/'{ --I- 2sx /~d (14) 

is u s u a l l y  r e l i e d  upon a s  n a r r o w b a n d e d .  

Using  (14), s ix  quan t i t i e s  a r e  r e p r e s e n t e d  be low:  

/ ~ \ E 1  I.,  

Z 3 q 5 5 , 

F ig .  1 

r~/cr o 
5g 

/I 

Fi: 
i 

1 

2 

3 

4 

5 

6 

F~ 
1 
2 I+- V 
6 9 i+-V+7 

48 60 

20 t50 . 480 524.8 

_:_ 30 360 2100 _L 5760 5670.4 

A c u r i o u s  a g r e e m e n t  of a l l  the  p o l y n o m i a l s  F i is  ob ta ined  for  
A w = : + exp(z) and a l l  p o s i t i v e  d e r i v a t i v e s  z0 (k). 

Shown in F ig .  1 a r e  the  c o e f f i c i e n t s  a i / a  o c o r r e s p o n d i n g  to  the 
s e r i e s  (2). The no ta t ion  on the c u r v e s  d e n o t e s :  E l ,  E 2 by  m e a n s  of 
(11)-(14), the  p o l y n o m i a l s  Fi(fl ) have  been  r e p r e s e n t e d  e a r l i e r ;  E l '  , 
E 2' b y  m e a n s  of  (I1),  (12) and  (15); TI, T 2 by  m e a n s  of (5) and  (16). The 
s u b s c r i p t s  1 and 2 in the  no ta t ion  on the c u r v e s  c o r r e s p o n d  to fl = 
0.051266 and fl = 0.29. As i s  s een ,  the t h e o r e m  is  s a t i s f i e d  (see the  

e x p r e s s i o n  for  a i / a 0 ) .  

A c c o r d i n g  to  (14) the m a g n i t u d e  of ( a o ~ ) m a x t u r n s  out r o b e  in f in i t e .  
Th is  fo l lows  f r o m  the fac t  tha t  the  s t a t i s t i c a l  m o d e l  (14) i n c l u d e s  l i n e s  
wi th  in f in i t e  i n t e n s i t y  for  a f ixed  width .  
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If l ines  with ident ical  in tens i ty  a r e  taken in the s a m e  model ,  then 

z = f~L ( s x / f J d )  (15) 

where  L is the Landenburg  and Reiche  function. Now (~w)max is s o m e  finite quanti ty.  As [3 ~ 0, when the 
l ines  do not over lap ,  the quant i ty  into)max = s/Trb as  for  a s ing le4 ine .  

The  quant i t ies  e i / ~  0 fo r  the same  f~l and /~2 a re  shown in Fig.  1 for  Eq. (15). The po lynomia l s  
F i d i f fe r  f r o m  those  r e p r e s e n t e d  e a r l i e r  by just  the number s  in the n u m e r a t o r s .  

Ins tead of (14) le t  us  use  an approx ima t ion  within the scope of the E l s a s s e r  mode l :  

A~ = err (z V-~- / 2). 

The a r g u m e n t  z is w r i t t e n  in (7) fo r  a = 7 r /2 .  Accord ing  to [1], in the c a s e  of a weak l ine the app rox -  
imat ion  has  the g r e a t e s t  e r r o r  < 3% at/3 = 1. It i n c r e a s e s  to 7-7.5% as fi d imin i shes .  The m a x i m u m  a b s o -  
lute devia t ion  does not exceed  0.03-0.035.  Let  us  use  the s impl i f ica t ion  [1] 

err (z V'~- / 2) ~ ] / t  - -  exp ( -  z ~) 

with the addi t ional  e r r o r  < 0.7%. 

Then the four th  de r iva t ive  A ~  b e c o m e s  infinite.  The t h e o r e m  (4) is not sa t i s f ied  because  of the ap-  
p rox ima t ions  in t roduced .  

Let  us examine  the e m p i r i c a l  fo rmula  p r o p o s e d  in [3] and st i l l  used  ex tens ive ly  in the l i t e r a t u r e :  

u + 2 ~  Z = ln( t  + u /  
u -~ 2] ) 

~v b 
u - - - a o x ,  % = ~ ,  / = 2 . 9 4 i 1 - - e x p ( - - l . 3 , ~ ) ] ,  ~=2z~-X- .  

The f i r s t  r a t i o s  o~i./o~ o a r e  r e p r e s e n t e d  in gene ra l  f o r m  below:  

t 

t i 
2 tl1 

3 § 2_~_l 3 

2 

5 -~- + 7 ~  

6 ~ t 4 44 t 

2 2 4 )  
p ] 5 

(16) 

The r a t i o s  a i / a 0  a r e  p r e s e n t e d  in the f igure  for  fl = fl I and fl = fl 2. 
a s s u m e d  that  f = 3.82 fl with < 3% e r r o r .  

Under  def ini te  condi t ions ,  (16) s imp l i f i e s :  

F o r  fl -< fl i  = 0.051266 it can  be 

Accord ing  to (2) we obtain 

Z = l n ( t + u ] ) ,  a~ / s0 ----- (i - -  t) f, f > ~ 2 .  

Z = u / - -  ~ + (u/p 
3 " ~  

The s e r i e s  d i v e r g e s  for  u f  > I .  The re fo re ,  (16) is not fully c o r r e c t .  For  example ,  i t  has  a lower  
bound in the p a r a m e t e r  fl . Fo r  u >> 2 f  the coeff ic ient  ~i  obtained is i n c o r r e c t  s ince  it depends on the p r e s -  
su re .  The e m p i r i c a l  f o rm u l a  A = In(2 - f l  + u~) is r e c o m m e n d e d  in [4] fo r  ~ > 2. V e r y  sma l l  va lues  of 
up a r e  t h e r e b y  e l imina ted .  F u r t h e r m o r e ,  the quant i ty  (~w)max, obtained,  if it has  meaning ,  is infinite a c -  
cord ing  to (16). And finally,  l e t  us note tha t  the contour  f (v)  of the r e a r r a n g e d  poles  c o r r e s p o n d i n g  to (16) 
ex i s t s  appa ren t l y  only for  x ~ 0 ,  f (v)  = v exp(-v) .  
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Actually, for low thicknesses in conformity  with (16) 

f (v) = ve-" ~ - -  -~- In [1 -- e-~h (vu)] 
r  co  

X = S [1 --exp (--u/(v))] de = ; e -vh(uv)dv  = In (1 + u). 
0 0 

Here h(vu) = In(y vu) + El(vu), lnT = 0.57722, E 1 is the exponential integral,  h(vu)~ vu for vu << 1. 

A comparison of the expressions presented ear l ie r  f o r  the polynomials  shows the essential  differences 
in the dependences of the coefficients ~j on the pa rame te r  ft. 

Let  us turn to important  examples of the approximate formulas which are  produced by using the prop- 
er t ies  of the se r ies  (2). If at least  the f i rs t  coefficients a ;  are  known, the se r ies  (2) yields a formula suit-  

J 
able for small  thicknesses.  Its l imit  can be extended after an est imation of the remainder  of the ser ies~ 
An approximate cur ta i lment  of the whole ser ies  is often successful .  

Landenburg and Reiche Function. The function L(u) de termines  the absorpt ion in a single line with a 
dispers ion contour. The interes t  in the function grew after Goode had used it to descr ibe  absorption in a 
narrow band [see (15)]. In conformity with the se r ies  (2) 

L (u) = A u,u~, - ~ = u ~ - ~ + . . . + ( - t ) ~ + *  I - [ u J + - . .  
j=t (17) 

s ~  8 X  

u - -  2rib ' u i =  o-'ff~-b - m j '  m l = t '  m j = 2 - - ~ / _ i ,  ]>/12 

Here A is the integrated absorption in the line (cm-1). 

The sequence of numbers  mj permit ted selection of a function suitable for all th icknesses :  

L = ] /  -~ -ue r f ( -~ - /  '.-2-) 

Using the approximation of the probabil i ty integral presented above, we obtain 

with a maximum e r r o r  of 5.7% for u = 1.2-1.6. 

The formula 

L = u [ i '  (n U~L~] -~~ 
~ ~ ) J (18) 

is presented in [1] wi th  ~ 1% e r r o r .  Its s imp l i f i ca t ion  y ie lds 

L ,  = tt l l f  t -+- stu I2  

with the grea tes t  e r r o r  of 7.5% at u ~ 1. 

Because the devia t ions  of L0 and L,, a re  opposite, we obtain the interpolation formula 

= 0.57Lo + 0.43L, (19) 

with < 1% e r r o r  (considerably less  than 1% as a rule). Formula  (19) is more  convenient than (18). 

Very exact approximations can be obtained for small  th icknesses  by taking account of the f i rs t  t e rms  
of the se r i e s  (17) separate ly .  Because the sequence of numbers mj converges  rapidly, the remainder  of the 
se r ies  can be curtai led by using the exponential function 

L = 0.2u -4- 0.t4 u ~ -- 0.065u ~ + [1 -- exp (--l.6u)] / 2,  (20) 

The u 3 coefficient is rev ised  so that the function would be exact for u = 1.2. In this case, (20) descr ibes  
the function well up to u = 1.4. 

Constructions of the formulas  for taking account of the f i rs t  t e rms  of the se r ies  separa te ly  can be 
different. 
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L e t  u s  a l s o  p r e s e n t  an  e x t r a p o l a t i o n  f o r m u l a  s u i t a b l e  for  l a r g e  a r g u m e n t s :  

L (u,) = ] f u .  / u L (u). 

F o r  u = 5, 0.7 --< u , / u  -< 1 .56, the  e r r o r  in the  f o r m u l a  i s  1.2-1%, As  u i n c r e a s e s  and the a r g u m e n t s  
u , ,  u a p p r o a c h  each  o t h e r ,  t he  e r r o r  d i m i n i s h e s  r a p i d l y .  

A b s o r p t i o n  in a Band  a c c o r d i n g  to  the_Model  {12) wi th  O v e r l a p p i n g  L i n e s .  

Ag=i--exp(--sxld), Z = 2 I  (uo) 
(21) ~0 ~: ~0 ~ 2I = uo  - -  O~ ~ + C~ - S V  - -  " '"  (uo = aox,  ao = S / h ~ )  

Here  C j i s  de f ined  b y  (13), C 2 = 0.3133. F u r t h e r m o r e ,  C j / C j _  1 t e n d s  to the  l i m i t  1 / ~ - ~  ~ 0.43. N e a r -  
b y  v a l u e s  of t he  n u m b e r s  C j / C j -  1 p e r m i t t e d  the  u s e  of the  exponen t i a l  funct ion  

I = t ,6 [1 - -  exp ( - -  0.625 uo / 2)] 

to c u r t a i l  t he  s e r i e s  {21). 

The m a x i m u m  e r r o r  of the  f o r m u l a  in the  i n t e r v a l  0 _< u 0 -< 4 equa l s  1.7% for  u0 = 4. F u r t h e r m o r e ,  i t  
i n c r e a s e s  r a p i d l y .  F o r  u0 >- 20 [5] 

wi th  < 3% e r r o r .  

The  f o r m u l a  

s = i . i i  tr l.2i o) 

! = V{.7 [1 + exp ( - ' 0 .43ud l  ln(uo/2)  

is  found for  the  i n t e r m e d i a t e  v a l u e s  4 -< u0 -< 20 with a m a x i m u m  e r r o r  of < 1.5% for  u 0 = 8. 

T h e r e  a r e  now s u f f i c i e n t l y  s i m p l e  and e x a c t  f o r m u l a s  of I for  a l l  u 0. They  a r e  c o n s i d e r a b l y  m o r e  e x a c t  
than the a p p r o x i m a t i o n  in [6] fo r  a l l  u0: 

I ---- ] / [ !  - -  exp (- -  u~ / 2)] [0.5772 -i- In (uQ / 2)] + E 1 (u62)]" ~ 

F i n a l l y ,  l e t  us  p r e s e n t  a n o t h e r  f o r m u l a  wi th  the  f i r s t  t e r m s  of the  s e r i e s  (21) t a k e n  s e p a r a t e l y  in to  
a c c o u n t :  

�9 ~=i -U~3 )] CluQ 

(C2 = 0.3133, C3 = 0.ittt ,  Ct = 0.04158) , 

The  e r r o r  in  the  f o r m u l a  i s  neg l ig ib l e  to u 0 = 6. F u r t h e r m o r e ,  i t  i n c r e a s e s  and e q u a l s  0~ fo r  u0 = 
10. G r a p h s  of the  func t ion  I(u0) in [5], which a r e  m o r e  d e t a i l e d  than  in [6], w e r e  r e l i e d  upon fo r  the  c o m -  
p a r i s o n .  
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